

Medgrid Objectives and approach Jean KOWAL

Technical workshop - Amman November 28/2013

MEDGRID OBJECTIVES

➤ To promote and impulse the development of the Mediterranean transmission and interconnection grid

Demonstrate that:

- it is technically feasible and environmentally acceptable
- it is economically sound
- institutional, regulatory and funding issues can be managed

and create a climate conducive to investments

Medgrid objective

How?

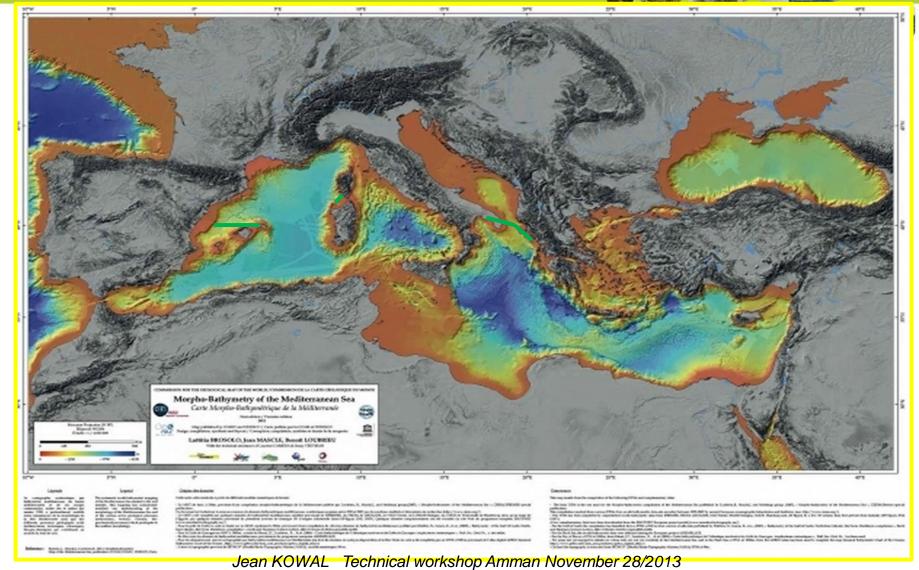
- Showing
- The interconnections are technically feasible,
- Environmentally acceptable
- They are economically viable
- They contribute to sustainability...
- Identifying prerequisites, if any,
- Technical,
- Regulatory, Funding,
- Cooperating with SEMCs

Medgrid objective

How?

- Supporting initiatives (shareholders, others)
- ➤ Working on pilot projects (Art 9)
- Communication
 - Publications, conferences, general public
 - Medgrid events
- > Lobby
 - European Bodies
 - Together with MEDREG, ENTSOE, MedTSO, Dii, OME,...

A interconnection MasterPlan



- Simulation of the optimal operation a fully interconnected euro-Med power system?
- Which exchanges?
- Which global profit (social welfare)?
- ➤ Simulation tool / modelling renewable, storage, system constraints
- Need of appropriate data
- ➤ What is the optimal interconnection system South-South North-South: costs balance the savings
- ➤ A feasible optimal system

Mediterranean sea bed

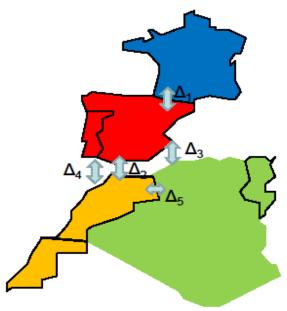
Possible routes

existing

Under study

farther

MEDGRID OBJECTIVES



"Reference"	MO: 4 GW	DZ: 2.6 GW
"RES export"	MO: 7 GW	DZ: 4.6 GW

	Interconnecti	ion Consoity NTC	ralinas	
Scen arios	Interconnection Capacity – NTC values			
u	Alternative solutions		ES-FR	
Ref.	1a: Δ_2 in AC	MA-ES=1,4 GW	5 GW Δ ₁ in DC	
	1b: Δ_2 AC existing Δ_4 in DC	MA-ES = 0,7 GW MA-PT = 0,7(to1) GW		
Ref. >>> RES	2a: Δ ₂ in DC	MA-ES= <u>2 GW</u>	6 GW Δ ₁ in DC	
	2b: Δ_2 in AC Δ_4 in DC	MA-ES= 1,4 <u>GW</u> MA-PT = 0,7(to1) GW		
RES exp	3.a: Δ_2 (Δ_5 ?)	MA-ES= 3 GW		
	3.b: $\Delta_2 \& \Delta_4 (\Delta_5?)$	MA-ES= <u>2 GW</u> MA-PT: <u>1 GW</u>	7 <i>GW</i> Δ ₁ in DC	
	3.c: ∆ ₂ &∆ ₃	MA-ES= <u>2 GW</u> DZ-ES: <u>1 GW</u>		

Defining Optimal transfer capacity

Economic studies

Potential power exchanges (benefits)

Optimization costs vs benefits

Feasible optimal grid (2020 – 2025)

Feasibility studies

Creating new transfer capacities (costs)

Regulation issues

- What is the present status –SEMCs vs EU
- Minimal amendments required
- How to apply existing rules i.e. Art 9...
- Helping investments (infrastructure package PCIs.)
- Tariffs (including transit))

Funding issues

- Funding the projects
- Models of international projects
 - Financial structure
 - Legal conditions
- Funding conditions and profitability:
 - Power market impact on profitability
 - Merchant lines vs TSO lines

Technology issues

- High voltage alternative current technologies (HVAC)
- High voltage direct current technologies (HVDC)
- Submarine power cable systems for depths up to 2500 meters
 - specific problem for Medgrid

Status of the Studies

- > Feasibility of interconnections
 - Results by Spring 2014
- >Analysis of optimal exchanges
 - Will be completed for Western part only

> Financial aspects: completed end 2013

Status of the Studies

- Regulation
 - Results published (with OME)
- Technology
 - Results available

A report on the activities of Medgrid issued by end of

2014, in conjunction with the 2d « Medgrid Conference. »

Thanks for your attention

www.medgrid-psm.com